Cryptowarez

A survey of Hardware Crypto Devices BSidesPDX

Updated: 17 September 2016

- 1. Introduction
- 2. Classical
- 3. Big Iron
- 4. Embedded

INTRODUCTION

- Owner of Cryptotronix
- Went around-the-world on a submarine
- \bigcirc I get sea sick.

So, why do we want crypto hardware?

- Crypto offloading (algorithm acceleration).
- Key Protection.

THOSE TWO ITEMS ARE THE FOUNDATION

From those, more advanced security features are built.

Of course, if you undermine those

CLASSICAL

Modern Crypto Hardware

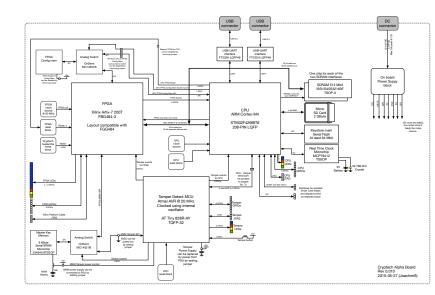
- First wide-spread modern dedicated crypto hardware
- Performs encipherment and decipherment in human time.
- Key management was a bit of a challenge
- Not recommended for new designs!!

BIG IRON

Hardware Security Modules

Source: https://www.thales-esecurity.com

- O Up to FIPS 140-2 Level 3
- PKCS#11 Interface,
 OpenSSL Engine, Java JCE,
 Microsoft CAPI and CNG.
- Uses: PKI management, code signing, payment processing, file encryption.
- Expensive.
- Cloud providers have some integration now: Azure & AWS.
- Heavily proprietary.


Cryptech: HSMs for the people!

Source: https://www.crowdsupply.com/cryptech/ open-hardware-security-module

- PKCS#11 over USB
- SHA-1 and 2, RSA and ECDSA (NIST)
- TRNG
- Contains an Artix-7 FPGA, ARM Cortex-M4 and ATtiny828 (for tamper detect)
- Heavily Open: Everything under BSD or CC license

Cryptech: Architecture

Digilent Zybo Zynq-7000

IP Core	LUTs	FF
CHACHA2O ¹	3585	3727
SHA1 ²	1717	1563
SHA256 ³	2296	1856
SHA512 ⁴	5310	3735

¹50MHz core clock and 250MHz AXI bus (1 round of encryption per core clock) For salsa20, its 20 rounds per block

²100MHz core clock and 100MHz AXI bus (1 round of encryption per core clock)

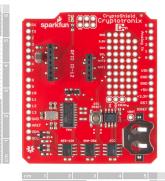
³70MHz core clock and 70MHz AXI bus (1 round of encryption per core clock) ⁴60MHz core clock and 60MHz AXI bus(1 round of encryption per core clock)

Embedded

Vendor	Product	Proc	Notes	
Freescale (NXP)	К8О	M4	HRNG, AES, MPU, en-	
			crypted flash	
STMicro	ST33G1M2A	M3	HRNG, AES, NESCRYPT	
Infineon	P SLJ 52ACA	16-bit	AES,ECC,RSA,EAL5+	
Microchip	CEC1302	M4	ECC,RSA,SHA,AES,HWRNG	
			No flash	
Maxim	MAX32550	M3	AES,SHA,HWRNG,Secure	
			Boot	

Vendor	Product	Notes		
Atmel	ATSHA2O4A	SHA256, HMAC, Open Datasheet		
Atmel	ATAES132A	Encrypted 32K EEPROM, Open Datasheet		
Atmel	ATECC508A	ECDSA, ECDH, P-256		
ST	STSAFE-A100	EAL5+, AES256 KW, ECDSA/ECDH		

○ 204/508 kernel driver:


https://github.com/cryptotronix/atsha204-i2c

- 204 cli: https://github.com/cryptotronix/hashlet
- 204/508 lib cli:

https://github.com/cryptotronix/libcrypti2c

○ **508 cli**: https://github.com/cryptotronix/EClet

CryptoThings

Lots of other hardware crypto areas, but you know, 20 minutes :(

- 1. Smart Cards
- 2. Secure Elements and NFC Controllers
- 3. PKI USB Tokens
- 4. U2F Tokens
- 5. Bitcoin Hardware Wallets
- 6. A smart card that runs BASIC and ECDSA
- 7. Crypto IP in most radio MCUs

GROWTH OF HARDWARE CRYPTO

Hardware crypto is growing with IoT. Silicon vendors are expanding the IP which is trickling down to custom ASICs and COTS ICs.

- 1. Dedicated crypto hardware may reduce software exploits, but it may *increase* hardware attack vectors.
- 2. Hardware is well, hard to change.
- 3. Few vendors providing non-NDA and open-distributor access.
- 4. A2: Analog Malicious Hardware

SECURITY ENGINEERING STILL REQUIRED

Hardware crypto does not alleviate proper threat modeling and risk mitigation.

WE NEED MORE OPEN CRYPTO!

Vendors have their part in adding security, but tools, knowledge, and application are what will turn the ship.

Das Ende

- www.cryptotronix.com
- $\, \odot \,$ Just ask for Josh ;)